首頁(yè)
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁(yè) > 新聞資訊 > 機(jī)器人開發(fā) > 實(shí)時(shí)識(shí)別卡扣成功裝配的機(jī)器學(xué)習(xí)框架  
 

實(shí)時(shí)識(shí)別卡扣成功裝配的機(jī)器學(xué)習(xí)框架

來(lái)源:CAAI認(rèn)知系統(tǒng)與信息處理專委會(huì)      編輯:創(chuàng)澤      時(shí)間:2020/5/27      主題:其他   [加盟]
卡扣式裝配廣泛應(yīng)用于多種產(chǎn)品類型的制造中,在零件未加工的情況下也可以進(jìn)行零件連接。卡扣裝配是結(jié)構(gòu)性的鎖定機(jī)制,不是通過(guò)視覺(jué)判斷是否成功完成裝配。人們認(rèn)為這兩部分之間形成的力量或響聲是成功的標(biāo)志。這在機(jī)器人裝配中是很難實(shí)現(xiàn)的,通常在產(chǎn)品質(zhì)量控制階段才能確定工藝的成功與否。近期,IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING發(fā)表了一篇“A Machine Learning Framework for Real-Time Identification of Successful Snap-Fit Assemblies”的論文,作者通過(guò)一個(gè)機(jī)器學(xué)習(xí)框架將人類識(shí)別成功快速裝配的能力遷移到自主機(jī)器人裝配上。下面我們具體了解相關(guān)研究工作。


1、卡扣力信號(hào)分析

在工業(yè)上,一般分為三種主要的卡扣類型,即懸臂式卡扣組件、環(huán)形卡扣組件和扭轉(zhuǎn)式卡扣組件。它們影響零件設(shè)計(jì)和卡扣機(jī)構(gòu),所有類型都是相似的,因?yàn)樗鼈兓谄渲幸粋(gè)柔性部件和第二個(gè)高剛度的部件,后者允許將兩個(gè)部件插入并鎖定在一起[1]。這兩個(gè)部分相互推動(dòng),導(dǎo)致柔性部件發(fā)生偏轉(zhuǎn),直到施加的力超過(guò)一定限度,從而導(dǎo)致兩個(gè)部件斷裂。它們的區(qū)別在于鎖定機(jī)構(gòu)的形狀和產(chǎn)生不同力特征的材料特性。懸臂和環(huán)形兩種卡扣組件類型卡扣(圖1)在成功裝配過(guò)程中產(chǎn)生的力特征(圖2)如下圖所示。

在懸臂卡扣裝配過(guò)程中,一旦咬合成功,柔性部件就會(huì)偏轉(zhuǎn),回到其初始位置對(duì)其進(jìn)行鎖定,只有拉動(dòng)柔性部件時(shí)才能將這兩個(gè)部件分離。對(duì)環(huán)形卡扣而言,咬合效果由施加在柔性部件上的恒定載荷決定。一旦載荷消失,卡扣就會(huì)松開。扭轉(zhuǎn)卡扣在鎖定運(yùn)動(dòng)方面有所不同,兩個(gè)部件之間的鎖定運(yùn)動(dòng)是旋轉(zhuǎn)的,但產(chǎn)生的力特征與環(huán)形和懸臂相似。

     

零件在不同的裝配階段產(chǎn)生的作用力可用于描述過(guò)程狀態(tài)。圖2所示的兩種卡扣的力特征圖具有不同的形狀,可用于及時(shí)識(shí)別裝配過(guò)程的完成情況。在這兩種情況下,物體的偏轉(zhuǎn)都會(huì)產(chǎn)生一個(gè)恒定的力,一旦部件的力消失,力就會(huì)急劇下降,當(dāng)兩部分鎖定在一起時(shí),力就會(huì)增大。懸臂卡扣在鎖定之前,兩個(gè)部件相互滑動(dòng),產(chǎn)生一個(gè)恒定的摩擦力,該摩擦力由于部件的材質(zhì)屬性造成的力載荷不同而變化。環(huán)形卡扣則不存在滑動(dòng)。力信號(hào)的確切形狀取決于連接部件的機(jī)械性能和卡扣類型。環(huán)形和懸臂是兩個(gè)極端情況,環(huán)形卡扣是在恒定的力載荷下,而懸臂卡扣在咬合后載荷消失。


2、機(jī)器學(xué)習(xí)框架

上述分析表明,所有類型的卡扣都會(huì)產(chǎn)生相似但不同的裝配力特征,以確認(rèn)最終的卡扣狀態(tài)。目前大多都是通過(guò)具體模型分析方法,這需要大量的時(shí)間和精力,而且可重用性有限。因此,本文定義了一個(gè)機(jī)器學(xué)習(xí)框架,該框架可以識(shí)別所有類型的卡扣的力輪廓特征。為了進(jìn)一步加速這一進(jìn)程,該框架采用了人機(jī)協(xié)作的方式來(lái)加速實(shí)驗(yàn)過(guò)程,生成具有高可變性和準(zhǔn)確學(xué)習(xí)結(jié)果的數(shù)據(jù)集。

     

只有構(gòu)建一個(gè)好的訓(xùn)練和測(cè)試集,才能建立一個(gè)好的分類器[2]。一個(gè)具有統(tǒng)計(jì)獨(dú)立樣本特征的訓(xùn)練集并不容易建立,特別是當(dāng)需要通過(guò)機(jī)器人實(shí)驗(yàn)產(chǎn)生時(shí)。一方面,生成這兩個(gè)程序集類示例可能無(wú)法達(dá)到使用基于數(shù)據(jù)的方法的目的,最終的樣本也不可能涵蓋所有情況。另一方面,人類專家雖然擁有設(shè)計(jì)和交付大量變化的實(shí)驗(yàn)的知識(shí),但是沒(méi)有充分的準(zhǔn)備時(shí)間。人類有一種與生俱來(lái)的可變性,允許構(gòu)建一個(gè)豐富的信息數(shù)據(jù)集,從而改善機(jī)器學(xué)習(xí)的效果。這一點(diǎn),加上人參與裝配過(guò)程所節(jié)省的大量時(shí)間,都顯示了人機(jī)協(xié)作的優(yōu)勢(shì)。上述內(nèi)容包含在圖3所示的擬議的框架中,其中定義了兩個(gè)離散階段:訓(xùn)練和操作階段。


訓(xùn)練階段的目的是生成一個(gè)能夠?qū)崟r(shí)準(zhǔn)確表征力信號(hào)的分類器。在這一階段,裝配是協(xié)作完成的,其中機(jī)器人拿著兩個(gè)零件中的一個(gè)充當(dāng)智能傳感器,而人類則作為專家進(jìn)行手動(dòng)裝配。在人機(jī)協(xié)作中,需要一個(gè)可以估計(jì)或測(cè)量的力,而不需要機(jī)器人的力傳感器或外部的視覺(jué)系統(tǒng),從而降低了成本和復(fù)雜性。論文展示了許多成功和失敗的裝配例子,在各種不同的條件下以不同的速度進(jìn)行了演示。


3、特征選擇

如圖2所示,卡扣裝配可以概括為在時(shí)間序列上力特征的獨(dú)特表示。相比之下,不成功的情況可能會(huì)有很大的不同,因力不足導(dǎo)致部件錯(cuò)位產(chǎn)生噪聲信號(hào),導(dǎo)致力上升而不出現(xiàn)明顯的下降?ǹ劢M件的力信號(hào)與零件的材料和鎖定機(jī)構(gòu)有關(guān)。由于低頻力信號(hào)在其頻譜中顯示的信息很少,因此基于頻率的特征不被考慮。首先選擇了24個(gè)特征并進(jìn)行計(jì)算,以進(jìn)一步評(píng)估其識(shí)別卡扣裝配的能力。統(tǒng)計(jì)的信號(hào)特征包括信號(hào)能量、偏差度、方差、對(duì)數(shù)變換、峰度和Willison振幅等。為了避免過(guò)度擬合,降低分類器的復(fù)雜度,降低對(duì)大型訓(xùn)練集的要求,降低算法的復(fù)雜度。由于特征向量的初始尺寸較小,采用了一種窮舉搜索子集的選擇方法,具有較高的性能(精度>0.95)[3]。對(duì)于最終的特征選擇,考慮了每個(gè)特征的計(jì)算復(fù)雜度。 


4、實(shí)驗(yàn)結(jié)果

作者進(jìn)行了大量的實(shí)驗(yàn)來(lái)分析所提出的框架,并對(duì)其在兩個(gè)階段的效率進(jìn)行了評(píng)估。首先介紹實(shí)驗(yàn)裝置,然后介紹數(shù)據(jù)采集過(guò)程和實(shí)驗(yàn)結(jié)果。將7自由度的KUKA LWR4+機(jī)械手與三指夾持器Barret BH-8連接,并使用特制夾持器進(jìn)行評(píng)估。選擇了兩組不同的部件(圖4),代表懸臂和環(huán)形卡扣組件。在不使用外力傳感器的情況下,通過(guò)KUKA力估算機(jī)制測(cè)量?jī)蓚(gè)部件之間產(chǎn)生的裝配力。



對(duì)于懸臂卡扣,插頭的外接部分安裝在定制的夾鉗上(圖5)。然后母零件被固定在一個(gè)穩(wěn)定的基座上,由機(jī)器人進(jìn)行自主裝配。針對(duì)懸臂和環(huán)形卡扣裝配都進(jìn)行了分析,以評(píng)估懸臂和環(huán)形卡扣裝配的選擇特征。首先,根據(jù)訓(xùn)練階段收集到的數(shù)據(jù)集,評(píng)估所提出的特征和訓(xùn)練分類器的效果。然后,應(yīng)用整個(gè)框架以提高其整體效率。


收集了四個(gè)不同的數(shù)據(jù)集,其中兩個(gè)是通過(guò)人機(jī)協(xié)作收集的,另外兩個(gè)是在機(jī)器人自主操作時(shí)收集的。在每種情況下,都有一半的程序集成功完成裝配,另一半則未能完成裝配。由于零件未對(duì)準(zhǔn)或所需力不足,會(huì)產(chǎn)生兩種不同類型的不成功卡扣裝配的情況。最后,為了測(cè)試效果,機(jī)器人裝配是在四種不同的平均速度下完成的。


結(jié)果表明,在訓(xùn)練集相對(duì)較小的情況下,通過(guò)人機(jī)協(xié)作提取的分類器能夠獲得很好的識(shí)別效果。需要注意的是,當(dāng)整個(gè)訓(xùn)練集用于分類器的訓(xùn)練時(shí),懸臂和環(huán)形卡扣的精度分別達(dá)到0.96和0.98。即使是訓(xùn)練集的一小部分,分類器的性能也非常好,在只有N=20和N=22個(gè)樣本時(shí),分類器的中值達(dá)到了0.9。另一個(gè)重要的觀察結(jié)果是,當(dāng)訓(xùn)練集規(guī)模增大時(shí),精度異常值幾乎為零,方差顯著下降,顯示了結(jié)果統(tǒng)計(jì)的顯著性。


運(yùn)行評(píng)估。評(píng)估了所提出的框架的整體效能,以實(shí)時(shí)接收組件裝配信號(hào)。結(jié)果表明,該方法具有良好的識(shí)別性能,與全訓(xùn)練集相似,準(zhǔn)確度、特異性和靈敏度均衡,平均值分別為0.92、0.981和0.86。這些結(jié)果表明與整個(gè)數(shù)據(jù)集(N=60)訓(xùn)練的分類器性能相比,該分類器性能的相對(duì)變化較小,分別為7%、0.08%和0.14%。然而,結(jié)果會(huì)隨著訓(xùn)練集規(guī)模的不同而變化,該訓(xùn)練集包含很多異常值,類似于圖6所示的分類器的結(jié)果。因此,為了克服此類問(wèn)題,應(yīng)仔細(xì)挑選訓(xùn)練集,以便在成功和失敗的情況下包含所有信號(hào)變化。


轉(zhuǎn)換評(píng)估。這兩種分類器對(duì)成功的卡扣裝配信號(hào)具有很高的分類精度。對(duì)不成功信號(hào)的分類精度較低,特征值分別下降到0.673和0.715。該分類器的總體性能用平衡精度來(lái)表示,兩種情況下分別為0.836和0.857。盡管分類器具有相對(duì)較好的平衡精度,但其特異度非常低,這表示不成功的裝配很容易被識(shí)別為成功裝配。


不可見(jiàn)對(duì)象的綜合評(píng)價(jià)。在這一部分中,對(duì)所提出的方法用于概括不同對(duì)象的整體能力進(jìn)行了評(píng)估。環(huán)形卡扣通過(guò)人機(jī)協(xié)作在數(shù)據(jù)集上訓(xùn)練產(chǎn)生的分類器,用于識(shí)別另一種環(huán)形卡扣類型的卡扣組件,在機(jī)器人自主操作下進(jìn)行裝配(圖7)。盡管這兩個(gè)對(duì)象不同,但它們有相似的咬合機(jī)制并生成相似的力配置文件。然而,不可見(jiàn)的物體有更嚴(yán)格的力學(xué)機(jī)制,并且咬合發(fā)生在較大的力振幅中,平均咬合值為45 N。在評(píng)估過(guò)程中,收集了30次咬合力剖面,每個(gè)部件有15個(gè)信號(hào)(成功和失敗)。該分類器以實(shí)時(shí)方式對(duì)信號(hào)進(jìn)行處理,同時(shí)信號(hào)在訓(xùn)練集的管理單元級(jí)別上擴(kuò)展并在200ms時(shí)間窗口中采樣。結(jié)果表明,對(duì)所有成功的裝配部件和265個(gè)不成功的卡扣裝配部件中的191個(gè)部件進(jìn)行了正確的分類,平均精度達(dá)到0.8604(72.08%特異性)。同時(shí)對(duì)離線情況(全信號(hào)分類)也進(jìn)行了評(píng)估。整體準(zhǔn)確度為0.9, 15個(gè)裝配失敗信號(hào)中的12個(gè)(80%特異性)被識(shí)別出,所有成功卡扣裝配部件信號(hào)都被識(shí)別出來(lái)。結(jié)果表明,該方法無(wú)需重新訓(xùn)練,可以很好地推廣。


該方法與通過(guò)具體模型分析方法進(jìn)行了進(jìn)一步的比較[4]。該框架是與另一框架在同一個(gè)數(shù)據(jù)集中完成的。這個(gè)數(shù)據(jù)集由33個(gè)裝配電連接器的力信號(hào)組成,其中9個(gè)屬于成功裝配的部件,而其余的屬于不同類型的錯(cuò)誤裝配部件。為了評(píng)估該框架,將不同類別的不成功的數(shù)據(jù)合并在一起,將數(shù)據(jù)集拆分為一個(gè)訓(xùn)練集(60%)和一個(gè)測(cè)試集(40%)。用基于模型的方法得出四種不同類別的精度,結(jié)果平均精度為0.945。因?yàn)樵紨?shù)據(jù)集的40%被用于驗(yàn)證該方法,所以無(wú)法進(jìn)行絕對(duì)公平的比較,但結(jié)果顯示效果相對(duì)較好。


5、結(jié)論

本文提出了一種基于機(jī)器學(xué)習(xí)的快速裝配的框架。該框架在兩種不同的卡扣裝配下進(jìn)行了測(cè)試,顯示出較高的識(shí)別精度(高達(dá)0.99)。通過(guò)人機(jī)協(xié)作訓(xùn)練產(chǎn)生了良好的學(xué)習(xí)數(shù)據(jù)集,成功和失敗案例的可變性都很高。該特征集對(duì)不同的對(duì)象中進(jìn)行了測(cè)試,顯示它在不同的卡扣裝配類型中的能力。只要對(duì)數(shù)據(jù)集進(jìn)行仔細(xì)的采樣,即使是很小的N=20個(gè)樣本的訓(xùn)練集,分類器的性能也能表現(xiàn)出良好的效果,可達(dá)精度>0.9。同時(shí)與基于模型的方法進(jìn)行了比較,結(jié)果表明了該方法的顯著優(yōu)異性。該框架未來(lái)將在更多類型的卡扣裝配中進(jìn)一步驗(yàn)證。


參考文獻(xiàn)

[1] J. Ji, K.-M. Lee,and S. Zhang, “Cantilever snap-fit performance analysis for haptic evaluation,”J. Mech. Des., vol. 133, no. 12, 2011, Art. no. 121004.

[2] C. Beleites, U.Neugebauer, T. Bocklitz, C. Krafft, and J. Popp, “Sample size planning forclassification models,” Anal. Chim. Acta, vol. 760, pp. 25–33, Jan.2013.

[3] I. Guyon and A.Elisseeff, “An introduction to variable and feature selection,” J. Mach.Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[4] J. Huang, Y.Wang, and T. Fukuda, “Set-membership-based fault detection and isolation forrobotic assembly of electrical connectors,” IEEE Trans. Autom. Sci. Eng., vol.15, no. 1, pp. 160–171, Jan. 2018. [Online]. Available: http://ieeexplore.ieee.org/document/7572012/



  



基于多任務(wù)學(xué)習(xí)和負(fù)反饋的深度召回模型

基于行為序列的深度學(xué)習(xí)推薦模型搭配高性能的近似檢索算法可以實(shí)現(xiàn)既準(zhǔn)又快的召回性能,如何利用這些豐富的反饋信息改進(jìn)召回模型的性能

張帆博士與Yiannis Demiris教授團(tuán)隊(duì)提出高效的機(jī)器人學(xué)習(xí)抓取衣服方法

機(jī)器人輔助穿衣通常人工的將衣服附在機(jī)器人末端執(zhí)行器上,忽略機(jī)器人識(shí)別衣服抓取點(diǎn)并進(jìn)行抓取的過(guò)程,從而將問(wèn)題簡(jiǎn)化

百度算法大牛35頁(yè)P(yáng)PT講解基于EasyDL訓(xùn)練并部署企業(yè)級(jí)高精度AI模型

百度AI開發(fā)平臺(tái)高級(jí)研發(fā)工程師餅干老師,為大家系統(tǒng)講解企業(yè)在AI模型開發(fā)中的難點(diǎn),以及針對(duì)這些難點(diǎn),百度EasyDL專業(yè)版又是如何解決的

Technica公司發(fā)布智能霧計(jì)算平臺(tái)技術(shù)白皮書

SmartFog可以輕松地將人工智能分析微服務(wù)部署到云、霧和物聯(lián)網(wǎng)設(shè)備上,其架構(gòu)支持與現(xiàn)有系統(tǒng)的靈活集成,提供了大量的實(shí)現(xiàn)方案,要用下一代人工智能算法來(lái)彌補(bǔ)現(xiàn)有解決方案的不足。

深度學(xué)習(xí)在術(shù)前手術(shù)規(guī)劃中的應(yīng)用

深度學(xué)習(xí)對(duì)推動(dòng)術(shù)前手術(shù)規(guī)劃尤其重要,手術(shù)規(guī)劃中要根據(jù)現(xiàn)有的醫(yī)療記錄來(lái)計(jì)劃手術(shù)程序,而成像對(duì)于手術(shù)的成功至關(guān)重要

迎賓機(jī)器人企業(yè)【推薦】

2022年迎賓機(jī)器人企業(yè):優(yōu)必選、穿山甲、創(chuàng)澤智能、慧聞科技、杭州艾米、廣州卡伊瓦、勇藝達(dá)、睿博天米、銳曼智能、康力優(yōu)藍(lán)、云跡科技、南大電子、獵戶星空、瞳步智能

從兩會(huì)提案看清機(jī)器人行業(yè)五大趨勢(shì)

在新冠疫情背景下,隨著新基建持續(xù)火熱,機(jī)器人行業(yè)的發(fā)展也被按下了快進(jìn)鍵,服務(wù)機(jī)器人價(jià)值凸顯,讓更多人看到了服務(wù)機(jī)器人在更多場(chǎng)景中的應(yīng)用可能

苗圩:中國(guó)每周增加1萬(wàn)多個(gè)5G基站

5月25日,工業(yè)和信息化部部長(zhǎng)苗圩指出,5G從今年以來(lái)加快了建設(shè)速度,每一周大概要增加1萬(wàn)多個(gè)5G的基站

35省/市5G建設(shè)最新進(jìn)展與規(guī)劃一覽

在5月17日的2020年世界電信和信息社會(huì)日大會(huì)上,中國(guó)三大運(yùn)營(yíng)披露了5G進(jìn)展及計(jì)劃,據(jù)了解,目前全國(guó)5G基站已達(dá)24萬(wàn)個(gè)

日照市中小企業(yè)“專精特新”培育提升專項(xiàng)行動(dòng)方案(2020—2022 年)

5月25日,日照市人民政府辦公室印發(fā)了《日照市中小企業(yè)“專精特新”培育提升專項(xiàng)行動(dòng)方案(2020—2022年)》的通知

日照市中小企業(yè)“專精特新”培育提升專項(xiàng)行動(dòng)方案(2020—2022年)

5月25日,日照印發(fā)了《日照市中小企業(yè)“專精特新”培育提升專項(xiàng)行動(dòng)方案》第一部分:目標(biāo)任務(wù),第二部分:培育對(duì)象及發(fā)展方向,第三部分:工作重點(diǎn)

2020數(shù)據(jù)安全企業(yè)排行[中國(guó)新基建]

安全企業(yè)名單:三六零,深信服,啟明星辰,衛(wèi)士通 ,綠盟科技,美亞柏科,安恒信息,迪普科技,東方通,北信源

泰合資本董事湯蕊菱:未來(lái)消費(fèi)的關(guān)鍵詞是“分層”

消費(fèi)行業(yè)的整體變化是用戶不斷細(xì)分、個(gè)性鮮明的品牌商品更受青睞、用戶更加理性等特征日益明顯

市際無(wú)縫換乘!青島公交要延伸到日照

日照市交通運(yùn)輸局局長(zhǎng)滕厚軍介紹,日照將加快推進(jìn)山海天王家灘公交場(chǎng)站改造,實(shí)現(xiàn)青島902路公交進(jìn)站停發(fā),市際無(wú)縫換乘;根據(jù)道路交通設(shè)施建設(shè)情況和市民需求,隨時(shí)新開辟、調(diào)整公共交通線路,實(shí)現(xiàn)日照與青島、濰坊公共交通互聯(lián)互通和設(shè)施共享

“觸控一體化”的新型機(jī)械手指尖研究

機(jī)械手面臨的難點(diǎn)在于如何在柔性物體上施加可控的擠壓力,以及在非穩(wěn)定狀況下確保精確、穩(wěn)健的抓握與柔性指端操控

2020 5g設(shè)備商排行

2020新基建5g設(shè)備商排行榜:華為 中興通訊 紫光股份 深南電路 星網(wǎng)銳捷 烽火通信 信維通訊 大唐電信 科信技術(shù) 沃特股份

衛(wèi)健委下發(fā)建設(shè)【智慧醫(yī)院】的通知

國(guó)家衛(wèi)生健康委辦公廳關(guān)于進(jìn)一步完善預(yù)約診療制度加強(qiáng)智慧醫(yī)院建設(shè)的通知,增強(qiáng)人民群眾就醫(yī)獲得感,現(xiàn)就進(jìn)一步建立完善預(yù)約診療制度

迎賓機(jī)器人企業(yè)【推薦】

2022年迎賓機(jī)器人企業(yè):優(yōu)必選、穿山甲、創(chuàng)澤智能、慧聞科技、杭州艾米、廣州卡伊瓦、勇藝達(dá)、睿博天米、銳曼智能、康力優(yōu)藍(lán)、云跡科技、南大電子、獵戶星空、瞳步智能

山東機(jī)器人公司準(zhǔn)獨(dú)角獸企業(yè)-創(chuàng)澤智能

山東機(jī)器人公司,創(chuàng)澤機(jī)器人榮獲山東省工信廳人工智能領(lǐng)域的準(zhǔn)獨(dú)角獸的稱號(hào),是中國(guó)工信部人工智能產(chǎn)業(yè)創(chuàng)新重點(diǎn)任務(wù)揭榜優(yōu)勝單位

消毒機(jī)器人優(yōu)勢(shì)、技術(shù)及未來(lái)發(fā)展趨勢(shì)

消毒機(jī)器人有哪些優(yōu)勢(shì),未來(lái)發(fā)展趨勢(shì)

家庭陪護(hù)機(jī)器人

家庭陪護(hù)機(jī)器人能在家中起到監(jiān)控安全陪護(hù)具有人機(jī)互動(dòng)交互服務(wù)多媒體娛樂(lè)價(jià)格查詢等

兒童陪護(hù)機(jī)器人

兒童陪護(hù)機(jī)器人與孩子互動(dòng)陪伴玩耍學(xué)習(xí)價(jià)格問(wèn)詢等功能說(shuō)明使用指南介紹

展館智能機(jī)器人

展館智能機(jī)器人可講解自主行走語(yǔ)音交互咨詢互動(dòng)價(jià)格咨詢等功能介紹以及表情展現(xiàn)能力

智能講解機(jī)器人

智能講解機(jī)器人正在劍橋講解演示咨詢互動(dòng)移動(dòng)宣傳價(jià)格問(wèn)詢等功能說(shuō)明介紹

智能接待機(jī)器人

智能接待機(jī)器人迎賓服務(wù)來(lái)賓問(wèn)詢答疑價(jià)格查詢

智能主持機(jī)器人

智能主持機(jī)器人參與主持了寧夏的云天大會(huì)并完成了大會(huì)的接待任務(wù)多才多藝載很受歡迎

超市智能機(jī)器人

超市智能機(jī)器人能幫助商家吸引客戶道路指引導(dǎo)購(gòu)價(jià)格查詢

4s店智能機(jī)器人

4s店智能機(jī)器人迎賓銷售導(dǎo)購(gòu)數(shù)據(jù)收集分析價(jià)格問(wèn)詢等

展廳智能機(jī)器人

展廳智能機(jī)器人可用于接待講解咨詢互動(dòng)價(jià)格查詢等功能
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機(jī)器人未來(lái)3-5年能夠?qū)崿F(xiàn)產(chǎn)業(yè)化的方
» 導(dǎo)診服務(wù)機(jī)器人上崗門診大廳 助力醫(yī)院智慧
» 山東省青島市政府辦公廳發(fā)布《數(shù)字青島20
» 關(guān)于印發(fā)《青海省支持大數(shù)據(jù)產(chǎn)業(yè)發(fā)展政策措
» 全屋無(wú)主燈智能化規(guī)范
» 微波雷達(dá)傳感技術(shù)室內(nèi)照明應(yīng)用規(guī)范
» 人工智能研發(fā)運(yùn)營(yíng)體系(ML0ps)實(shí)踐指
» 四驅(qū)四轉(zhuǎn)移動(dòng)機(jī)器人運(yùn)動(dòng)模型及應(yīng)用分析
» 國(guó)內(nèi)細(xì)分賽道企業(yè)在 AIGC 各應(yīng)用場(chǎng)景
» 國(guó)內(nèi)科技大廠布局生成式 AI,未來(lái)有望借
» AIGC領(lǐng)域相關(guān)初創(chuàng)公司及業(yè)務(wù)場(chǎng)景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業(yè)化空間前景廣闊應(yīng)用場(chǎng)景豐富
» AI 內(nèi)容創(chuàng)作成本大幅降低且耗時(shí)更短 優(yōu)
 
== 機(jī)器人推薦 ==
 
迎賓講解服務(wù)機(jī)器人

服務(wù)機(jī)器人(迎賓、講解、導(dǎo)診...)

智能消毒機(jī)器人

智能消毒機(jī)器人

機(jī)器人底盤

機(jī)器人底盤

 

商用機(jī)器人  Disinfection Robot   展廳機(jī)器人  智能垃圾站  輪式機(jī)器人底盤  迎賓機(jī)器人  移動(dòng)機(jī)器人底盤  講解機(jī)器人  紫外線消毒機(jī)器人  大屏機(jī)器人  霧化消毒機(jī)器人  服務(wù)機(jī)器人底盤  智能送餐機(jī)器人  霧化消毒機(jī)  機(jī)器人OEM代工廠  消毒機(jī)器人排名  智能配送機(jī)器人  圖書館機(jī)器人  導(dǎo)引機(jī)器人  移動(dòng)消毒機(jī)器人  導(dǎo)診機(jī)器人  迎賓接待機(jī)器人  前臺(tái)機(jī)器人  導(dǎo)覽機(jī)器人  酒店送物機(jī)器人  云跡科技潤(rùn)機(jī)器人  云跡酒店機(jī)器人  智能導(dǎo)診機(jī)器人 
版權(quán)所有 © 創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司     中國(guó)運(yùn)營(yíng)中心:北京·清華科技園九號(hào)樓5層     中國(guó)生產(chǎn)中心:山東日照太原路71號(hào)
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728