創(chuàng)澤機(jī)器人
CHUANGZE ROBOT
當(dāng)前位置:首頁 > 新聞資訊 > 機(jī)器人開發(fā) > 如何更高效地壓縮時序數(shù)據(jù)?基于深度強(qiáng)化學(xué)習(xí)的探索

如何更高效地壓縮時序數(shù)據(jù)?基于深度強(qiáng)化學(xué)習(xí)的探索

來源:阿里機(jī)器智能     編輯:創(chuàng)澤   時間:2020/6/4   主題:其他 [加盟]

隨著移動互聯(lián)網(wǎng)、IoT、5G 等的應(yīng)用和普及,一步一步地我們走進(jìn)了數(shù)字經(jīng)濟(jì)時代。隨之而來的海量數(shù)據(jù)將是一種客觀的存在,并發(fā)揮出越來越重要的作用。時序數(shù)據(jù)是海量數(shù)據(jù)中的一個重要組成部分,除了挖掘分析預(yù)測等,如何高效的壓縮存儲是一個基礎(chǔ)且重要的課題。同時,我們也正處在人工智能時代,深度學(xué)習(xí)已經(jīng)有了很多很好的應(yīng)用,如何在更多更廣的層面發(fā)揮作用?本文總結(jié)了當(dāng)前學(xué)術(shù)界和工業(yè)界數(shù)據(jù)壓縮的方法,分析了大型商用時序數(shù)據(jù)壓縮的特性,提出了一種新的算法,分享用深度強(qiáng)化學(xué)習(xí)進(jìn)行數(shù)據(jù)壓縮的研究探索及取得的成果。

深度學(xué)習(xí)的本質(zhì)是做決策,用它解決具體的問題時很重要的是找到契合點(diǎn),合理建模,然后整理數(shù)據(jù)優(yōu)化 loss 等最終較好地解決問題。在過去的一段時間,我們在用深度強(qiáng)化學(xué)習(xí)進(jìn)行數(shù)據(jù)壓縮上做了一些研究探索并取得了一些成績,已經(jīng)在 ICDE 2020 research track 發(fā)表(Two-level Data Compression using Machine Learning in Time Series Database)并做了口頭匯報。在這里做一個整體粗略介紹,希望對其它的場景,至少是其它數(shù)據(jù)的壓縮等,帶來一點(diǎn)借鑒作用。

背景描述

1 時序數(shù)據(jù)

時序數(shù)據(jù)顧名思義指的是和時間序列相關(guān)的數(shù)據(jù),是日常隨處可見的一種數(shù)據(jù)形式。下圖羅列了三個示例:a)心電圖,b)股票指數(shù),c)具體股票交易數(shù)據(jù)。

關(guān)于時序數(shù)據(jù)庫的工作內(nèi)容,簡略地,在用戶的使用層面它需要響應(yīng)海量的查詢,分析,預(yù)測等;而在底層它則需要處理海量的讀寫,壓縮解壓縮,采用聚合等操作,而這些的基本操作單元就是時序數(shù)據(jù) <timestamp, value>,一般(也可以簡化)用兩個 8 byte 的值進(jìn)行統(tǒng)一描述。

可以想象,任何電子設(shè)備每天都在產(chǎn)生各種各樣海量的時序數(shù)據(jù),需要海量的存儲空間等,對它進(jìn)行壓縮存儲及處理是一個自然而然的方法。而這里的著重點(diǎn)就是如何進(jìn)行更高效的壓縮。

2  強(qiáng)化學(xué)習(xí)

機(jī)器學(xué)習(xí)按照樣本是否有 groundTruth 可分為有監(jiān)督學(xué)習(xí),無監(jiān)督學(xué)習(xí),以及強(qiáng)化學(xué)習(xí)等。強(qiáng)化學(xué)習(xí)顧名思義是不停地努力地去學(xué)習(xí),不需要 groundTruth,真實(shí)世界很多時候也沒有 groundTruth,譬如人的認(rèn)知很多時候就是不斷迭代學(xué)習(xí)的過程。從這個意義上來說,強(qiáng)化學(xué)習(xí)是更符合或更全面普遍的一種處理現(xiàn)實(shí)世界問題的過程和方法,所以有個說法是:如果深度學(xué)習(xí)慢慢地會像 C/Python/Java 那樣成為解決具體問題的一個基礎(chǔ)工具的話,那么強(qiáng)化學(xué)習(xí)是深度學(xué)習(xí)的一個基礎(chǔ)工具。

強(qiáng)化學(xué)習(xí)的經(jīng)典示意圖如下,基本要素為 State,Action,和 Environment;具^程為:Environment 給出 State,Agent 根據(jù) state 做 Action 決策,Action 作用在 Environment 上產(chǎn)生新的 State 及 reward,其中 reward 用來指導(dǎo) Agent 做出更好的 Action 決策,循環(huán)往復(fù)….

而常見的有監(jiān)督學(xué)習(xí)則簡單很多,可以認(rèn)為是強(qiáng)化學(xué)習(xí)的一種特殊情況,目標(biāo)很清晰就是 groudTruth,因此對應(yīng)的 reward 也比較清晰。

強(qiáng)化學(xué)習(xí)按照個人理解可以歸納為以下三大類:

1)DQN

Deep Q network,比較符合人的直觀感受邏輯的一種類型,它會訓(xùn)練一個評估 Q-value 的網(wǎng)絡(luò),對任一 state 能給出各個 Action 的 reward,然后最終選擇 reward 最大的那個 action 進(jìn)行操作即可。訓(xùn)練過程通過評估 “估計(jì)的 Q-value” 和 “真正得到的 Q-value” 的結(jié)果進(jìn)行反向傳遞,最終讓網(wǎng)絡(luò)估計(jì) Q-value 越來越準(zhǔn)。

2)Policy Gradient

是更加端到端的一種類型,訓(xùn)練一個網(wǎng)絡(luò),對任一 state 直接給出最終的 action。DQN 的適用范圍需要連續(xù) state 的 Q-value 也比較連續(xù)(下圍棋等不適用這種情況),而 Policy Gradient 由于忽略內(nèi)部過程直接給出 action,具有更大的普適性。但它的缺點(diǎn)是更難以評價及收斂。一般的訓(xùn)練過程是:對某一 state,同時隨機(jī)的采取多種 action,評價各種 action 的結(jié)果進(jìn)行反向傳遞,最終讓網(wǎng)絡(luò)輸出效果更好的 action。

3)Actor-Critic

試著糅合前面兩種網(wǎng)絡(luò),取長補(bǔ)短,一方面用 policy Gradient 網(wǎng)絡(luò)進(jìn)行任一 state 的 action 輸出,另外一方面用 DQN 網(wǎng)絡(luò)對 policy gradient 的 action 輸出進(jìn)行較好的量化評價并以之來指導(dǎo) policy gradient 的更新。如名字所示,就像表演者和評論家的關(guān)系。訓(xùn)練過程需要同時訓(xùn)練 actor(policy Graident)和 critic(QN)網(wǎng)絡(luò),但 actor 的訓(xùn)練只需要 follow critic 的指引就好。它有很多的變種,也是當(dāng)前 DRL 理論研究上不停發(fā)展的主要方向。

時序數(shù)據(jù)的壓縮

對海量的時序數(shù)據(jù)進(jìn)行壓縮是顯而易見的一個事情,因此在學(xué)術(shù)界和工業(yè)界也有很多的研究和探索,一些方法有:

Snappy:對整數(shù)或字符串進(jìn)行壓縮,主要用了長距離預(yù)測和游程編碼(RLE),廣泛的應(yīng)用包括 Infuxdb。

Simple8b:先對數(shù)據(jù)進(jìn)行前后 delta 處理,如果相同用RLE編碼;否則根據(jù)一張有 16 個 entry 的碼表把 1 到 240 個數(shù)(每個數(shù)的 bits 根據(jù)碼表)pack 到 8B 為單位的數(shù)據(jù)中,有廣泛的應(yīng)用包括 Infuxdb。

Compression planner:引入了一些 general 的壓縮 tool 如 scale, delta, dictionary, huffman, run length 和 patched constant 等,然后提出了用靜態(tài)的或動態(tài)辦法組合嘗試這些工具來進(jìn)行壓縮;想法挺新穎但實(shí)際性能會是個問題。

ModelarDB:側(cè)重在有損壓縮,基于用戶給定的可容忍損失進(jìn)行壓縮。基本思想是把維護(hù)一個小 buff,探測單前數(shù)據(jù)是否符合某種模式(斜率的直線擬合),如果不成功,切換模式重新開始buff等;對支持有損的 IoT 領(lǐng)域比較合適。

Sprintz:也是在 IoT 領(lǐng)域效果會比較好,側(cè)重在 8/16 bit 的整數(shù)處理;主要用了 scale 進(jìn)行預(yù)測然后用 RLC 進(jìn)行差值編碼并做 bit-level 的 packing。

Gorilla:應(yīng)用在 Facebook 高吞吐實(shí)時系統(tǒng)中的當(dāng)時 sofa 的壓縮算法,進(jìn)行無損壓縮,廣泛適用于 IoT 和云端服務(wù)等各個領(lǐng)域。它引入 delta-of-delta 對時間戳進(jìn)行處理,用 xor 對數(shù)據(jù)進(jìn)行變換然后用 Huffman 編碼及 bit-packing。示例圖如下所示。

MO:類似 Gorilla,但去掉了 bit-packing,所有的數(shù)據(jù)操作基本都是字節(jié)對齊,降低了壓縮率但提供了處理性能。











滴滴機(jī)器學(xué)習(xí)平臺調(diào)度系統(tǒng)的演進(jìn)與K8s二次開發(fā)

滴滴機(jī)器學(xué)習(xí)場景下的 k8s 落地實(shí)踐與二次開發(fā)的技術(shù)實(shí)踐與經(jīng)驗(yàn),包括平臺穩(wěn)定性、易用性、利用率、平臺 k8s 版本升級與二次開發(fā)等內(nèi)容

人工智能和機(jī)器學(xué)習(xí)之間的差異及其重要性

機(jī)器學(xué)習(xí)就是通過經(jīng)驗(yàn)來尋找它學(xué)習(xí)的模式,而人工智能是利用經(jīng)驗(yàn)來獲取知識和技能,并將這些知識應(yīng)用于新的環(huán)境

面向動態(tài)記憶和學(xué)習(xí)功能的神經(jīng)電晶體可塑性研究

神經(jīng)形態(tài)結(jié)構(gòu)融合學(xué)習(xí)和記憶功能領(lǐng)域的研究主要集中在人工突觸的可塑性方面,同時神經(jīng)元膜的固有可塑性在神經(jīng)形態(tài)信息處理的實(shí)現(xiàn)中也很重要

CVPOS自助收銀的挑戰(zhàn)以及商品識別算法工程落地方法和經(jīng)驗(yàn)

針對結(jié)算收銀場景中商品識別的難點(diǎn),從商品識別落地中的模型選擇、數(shù)據(jù)挑選與標(biāo)注、前端和云端部署、模型改進(jìn)等方面,進(jìn)行了深入講解

內(nèi)容流量管理的關(guān)鍵技術(shù):多任務(wù)保量優(yōu)化算法實(shí)踐

通過分析其中的關(guān)鍵問題,建立了新熱內(nèi)容曝光敏感模型,并最終給出一種曝光資源約束下的多目標(biāo)優(yōu)化保量框架與算法

百變應(yīng)用場景下,優(yōu)酷基于圖執(zhí)行引擎的算法服務(wù)框架筑造之路

優(yōu)酷推薦業(yè)務(wù),算法應(yīng)用場景眾多,需求靈活多變,需要一套通用業(yè)務(wù)框架,支持運(yùn)行時的算法流程的裝配,提升算法服務(wù)場景搭建的效率

餓了么推薦算法的演進(jìn)及在線學(xué)習(xí)實(shí)踐

餓了么算法專家劉金介紹推薦業(yè)務(wù)背景,包括推薦產(chǎn)品形態(tài)及算法優(yōu)化目標(biāo);然后是算法的演進(jìn)路線;最后重點(diǎn)介紹在線學(xué)習(xí)是如何在餓了么推薦領(lǐng)域?qū)嵺`的

拯救渣畫質(zhì),馬賽克圖秒變高清,杜克大學(xué)提出AI新算法

杜克大學(xué)的一種 AI 算法PULSE可以將模糊、無法識別的人臉圖像轉(zhuǎn)換成計(jì)算機(jī)生成的圖像,其細(xì)節(jié)比之前任何時候都更加精細(xì)、逼真

如何搭建一個GPU加速的分布式機(jī)器學(xué)習(xí)系統(tǒng),遇到的問題和解決方法

能快速將現(xiàn)有算法在實(shí)際生產(chǎn)環(huán)境落地,并能利用GPU加速實(shí)現(xiàn)大規(guī)模計(jì)算,我們自己搭建了一個GPU加速的大規(guī)模分布式機(jī)器學(xué)習(xí)系統(tǒng),取名小諸葛

ICRA2020論文分享:基于視觸融合感知的可形變物體抓取狀態(tài)評估

人類可以通過視覺和觸覺融合感知快速確定抓取可變形物體所需力的大小,以防止其發(fā)生滑動或過度形變,但這對于機(jī)器人來說仍然是一個具有挑戰(zhàn)性的問題

一種基于層次強(qiáng)化學(xué)習(xí)的機(jī)械手魯棒操作

在底層通過使用基于模型的操作單元,保證了手指與物體之間持續(xù)穩(wěn)定的抓;在中層使用強(qiáng)化學(xué)習(xí)進(jìn)行規(guī)劃,從而實(shí)現(xiàn)較長和復(fù)雜的手內(nèi)操作流程

移動機(jī)器人Wang利用深度強(qiáng)化學(xué)習(xí)算法和視覺感知相結(jié)合的方法完成非結(jié)構(gòu)環(huán)境下的移動

中科院沈陽自動化所的Wang利用深度強(qiáng)化學(xué)習(xí)算法和視覺感知相結(jié)合的方法來完成移動機(jī)器人在非結(jié)構(gòu)環(huán)境下的移動操作
資料獲取
機(jī)器人開發(fā)
== 最新資訊 ==
ChatGPT:又一個“人形機(jī)器人”主題
ChatGPT快速流行,重構(gòu) AI 商業(yè)
中國機(jī)器視覺產(chǎn)業(yè)方面的政策
中國機(jī)器視覺產(chǎn)業(yè)聚焦于中國東部沿海地區(qū)(
從CHAT-GPT到生成式AI:人工智能
工信部等十七部門印發(fā)《機(jī)器人+應(yīng)用行動實(shí)
全球人工智能企業(yè)市值/估值 TOP20
創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司第十一期上
諧波減速器和RV減速器比較
機(jī)器人減速器:諧波減速器和RV減速器
人形機(jī)器人技術(shù)難點(diǎn) 高精尖技術(shù)的綜合
機(jī)器人大規(guī)模商用面臨的痛點(diǎn)有四個方面
青島市機(jī)器人產(chǎn)業(yè)概況:機(jī)器人企業(yè)多布局在
六大機(jī)器人產(chǎn)業(yè)集群的特點(diǎn)
機(jī)械臂-高度非線性強(qiáng)耦合的復(fù)雜系統(tǒng)
== 機(jī)器人推薦 ==
迎賓講解服務(wù)機(jī)器人

服務(wù)機(jī)器人(迎賓、講解、導(dǎo)診...)

智能消毒機(jī)器人

智能消毒機(jī)器人

機(jī)器人開發(fā)平臺

機(jī)器人開發(fā)平臺


機(jī)器人招商 Disinfection Robot 機(jī)器人公司 機(jī)器人應(yīng)用 智能醫(yī)療 物聯(lián)網(wǎng) 機(jī)器人排名 機(jī)器人企業(yè) 機(jī)器人政策 教育機(jī)器人 迎賓機(jī)器人 機(jī)器人開發(fā) 獨(dú)角獸 消毒機(jī)器人品牌 消毒機(jī)器人 合理用藥 地圖
版權(quán)所有 創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司 中國運(yùn)營中心:北京 清華科技園九號樓5層 中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088 銷售2:4006-937-088 客服電話: 4008-128-728