執(zhí)行層:系統(tǒng)在做出決策后,對機器人本體做出控制。機器人各操控系統(tǒng)都與決策系統(tǒng)相鏈接,并按指令
精確執(zhí)行。
⚫ 自平衡系統(tǒng):機器人在不同環(huán)境下保持動態(tài)平衡(特別是外力沖擊下),需要軟件算法和機械設(shè)計共同作用。
軟件層面看,一方面通過傳感器獲取機器人的狀態(tài)信息,從而控制關(guān)節(jié)運動實現(xiàn)平衡;另一方面,通過預(yù)測機
器人的運動軌跡和所需動作,而提前應(yīng)對。
⚫ 行走步態(tài):零力矩點(ZMP)必須落在支撐面內(nèi),合理地規(guī)劃踝關(guān)節(jié)和髖關(guān)節(jié),以保持動態(tài)行走時重心的穩(wěn)定;
同時腿部應(yīng)具備適當(dāng)?shù)臋C械柔順性,有效緩解來自未知高剛度環(huán)境的碰撞沖擊。這均要求算法與關(guān)節(jié)硬件相匹
配。
人形機器人需完成人類 各種動作,動作連續(xù)復(fù)雜,需頻繁的物理交互且操作因果性多,算法難度遠高于自動駕駛,來控制機器人身體做出動作規(guī)劃 并下發(fā)指令
人形機器人進入門檻高,科技巨頭擁有研發(fā)實力及軟件基礎(chǔ),在視覺感知,算法,虛擬仿真等軟件方面領(lǐng)先優(yōu)勢明顯,且與原有業(yè)務(wù)協(xié)同效應(yīng)明顯
人形機器人本質(zhì)是AI系統(tǒng)落地物理世界的最佳載體,但更核心問題在于是算法對運動能力的控制,包括本體平衡,行走的步態(tài),部抓取等規(guī)劃與控制
預(yù)測全球25年人形機器人初步商業(yè)化,銷量3萬臺左右,30年這些領(lǐng)域就滲透率1.5-2%對應(yīng)存量需求230萬臺,新增需求100萬臺+,2035年銷量有望突破1000萬臺
為人形機器人的成熟也是漸進式,可在細(xì)分市場的率先商業(yè)化,后逐步成熟轉(zhuǎn)為通用型機器人 ,由tob轉(zhuǎn)為toc,進入家政等市場,做人想做但是不能做的工作
硬件難點是靈敏度與承壓能力的協(xié)調(diào),關(guān)節(jié)能力不能匹配運動規(guī)劃;軟件難點是訓(xùn)練不同任務(wù)的運動規(guī)劃,實時反饋視覺檢測與理解,并對運動規(guī)劃做調(diào)整
感知模塊包括兩方面視覺和觸覺,視覺有純視覺路線,也有依靠雷達等多方式融合路線;決策模塊是機器人的大腦,核心是芯片與算法
人形機器人擁有更高級的感知交互系統(tǒng),包括傳感模塊和軟件方面,人形機器人比服務(wù)機器人更高,靠雙足行走,對減速器負(fù)載和電機響應(yīng)速度要求更高
具身智能與垂直大模型,人形與四足仿生機器人,三維感知模型和多模態(tài)信息融合,機器人新型核心零部件與靈巧操作,腦機接口,生肌電一體化與微納機器人
特殊場景服役機器人是指在特定環(huán)境或情況下執(zhí)行任務(wù)的機器人,在消防救援,電力勘測,農(nóng)業(yè),建筑,核工業(yè),反恐防暴,國防安全,空間探測等領(lǐng)域具有巨大需求
群體機器人技術(shù)的應(yīng)用領(lǐng)域廣泛,集群智能作為人工智能的分支,將得到越來越多的應(yīng)用,有望在機器人等領(lǐng)域創(chuàng)造出新的應(yīng)用和創(chuàng)新
云服務(wù)機器人是指將機器人的核心計算和智能部分部署在云端服務(wù)器,云端大腦+本地機體”或“云端服務(wù)”機器人將成為規(guī);茝V與應(yīng)用的重要模式之一